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The method of Gordon for the solution of the Schrisdinger equation for elastic 
scattering is reformulated. Ordinary Rayleigh-Schredinger perturbation theory is used 
to obtain the solution in a succession of intervals of the independent (radial) variable. 
A criterion for the automatic selection of interval sizes for a requisite accuracy of the 
phase shift is developed. The perturbation technique (carried to first order, taking the 
zero-order potential to be constant) is tested against the highly efficient Numerov 
direct-integration method on the Lennard-Jones (12, 6) potential. Tt is found that, 

under the restrictions imposed on the perturbation method, the Numerov procedure is 
almost always more efficient, except for partial waves of low angular momentum. 

I. INTRODUCTION 

Several methods have been developed for the accurate determination of phase 
shifts for elastic scattering. Bernstein [I] has used the Runge-Kutta-Gill method 
to integrate directly the partial-wave equations for the Lennard-Jones (12, 6) 
potential. Harris [Z], and later Nesbet [3], have applied variational techniques to 
the attractive exponential potential. More recently Knudson and Kirtman [4] have 
developed a variation-perturbation approach, which they have tested on attractive 
exponential and Yukawa potentials. Gordon [5], and later others [6], have 
employed so called “reference-function” methods to construct the partial-wave 

* Based in part on portions of the Ph.D. Theses of A. F. Wagner (Caltech, 1972) and J. P. 
Riehl (Purdue, 1975). 
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solutions in piecewise analytic form. Finally, Sams and Kouri [‘7] have apptieii a 
noniterative technique to solve the Volterra integral equation (which is equi.valeat 
to the partial-wave equation) for elastic scattering of electrons fkorn hydrogen 
atoms. 

The purpose of the present work is twofold. First, we wish to demonstrate rha: 
Gordon’s method may be easily derived by a straightforward application of 
standard Rayleigh-Schrodinger perturbation theory, a fact perhaps not wideiy 
known. Second, we wish to compare, for elastic scattering, tire computation 
eficiency and accuracy of our reformulated method with that of the Numerov 
direct-integration procedure. In this respect, we complement the work of Allison LE.1 
on coupled differential equations for inelastic scattering. 

In Section II we present a formal derivation of the perturbation technique, alon& 
with the derivation of an interval-length selection formula. The Numerov and 
perturbation methods are then compared in Section III for the L-J (12-6) Hg--E.! 
system considered by Bernstein [l]. 

II. DERIVATION OF THE PERTUR3ATiOI-G FORMALISM 

From the standard theory of elastic scattering 193 from spherically symmetric 
potentials, the Ith partial wave satisfies the differential equation 

along with the boundary conditions 

where 
k = (2pE)q5i, (3) 

k~ is the reduced mass, E is the total collision energy, V(r) is the potential energy, 
and 6, is the phase shift. 

Following Gordon [5], we divide the range of the independent variable r into 
intervals. Within the ith interval the effective potential U(r) is decomposed into a 
“reference” potential Uio(r) and a remaining potential A CTi(r): 
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This decomposition is specific to each interval. The “reference” (zero-order) 
potential is chosen according to two criteria: (1) It should be a good representation 
of the true potential; (2) It should permit known analytic linearly independent 
solutions & and & of the “reference” partial-wave equation 

Gordon [5] uses a mixed-Wronskian approach to obtain an approximate 
solution to uI, valid in the ith interval, which is a linear combination of +1 and c$% 
plus correction terms arising from d U,(r). Alternatively, we can formally solve all 
the partial-wave equations pertaining to the ith interval by standard Rayleigh- 
Schrodinger perturbation theory. We expand uI in a perturbation series as 

03 

241 = c Ii”, (6) 
n=O 

where we have suppressed the indices I and i on LP. Treating AU,(r) as a pertur- 
bation, we can rewrite Eq. (1) over the ith interval as a hierarchy of equations: 

[ 
- $ + U,“(r) - k2] u” = 0, 

[ 
- -f& + U:(r) - kl] IP = -A Ui(r) z/-l, I1 = 1, 2, 3 )... . (8) 

u” is simply a linear combination of the known solutions CJ$ and d2 [see Eq. (5)] 
while zP, n > 1, can be found by Duhamel’s method [lo]. Thus, we have 

u”(r) = clqW) + c2#4r), 

u”(r) = W-l Jr dr’ M(r, r’) Aui(r’) un-l(r’). 
Ti 

(94 

P-4 

The constants c1 and c2 are determined by the requirement that the wave function 
and its derivative be continuous at the endpoints of the interval. ri is the boundary 
between the (i - 1)th and ith intervals. IV is the usual Wronskian 

and M(r, r’) is a kernel defined by 

Wry r’) = 9Mr’> 4,(r) - (b2(i-7 9&(r). 
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From Eq. (9b) it is clear that each higher-order correction to :: is proportional 
to some average value of d U,(r) raised to a higher power. Furthermore, it is easy 
to show that LI”(F-~) = 0 for YE > 0 and that the first nonzero derivative of 1~;~ 
evaluated at ri is the 20th derivative. Therefore if d U,(Y) is small over the interva’i 
each higher-order term will grow more and more slowly from bi as ? increases 
from r; . IIn other words, the perturbation expansion converges, and it will converge 
to any order if d U,(r) is small enough over the interval. For any reasonable choice 
of Uiu(r), d U,(r) can always be made small enough by simply taking the inter-v& 
small enough. Gordon’s approximation to ~1~ , as defined by Eqs. (2.13) through 
(2.21) in Ref. 5, is identical to the perturbation method carried out to first order, 

Since any practical method of solving the partial-wave equations is a~~roxl~~ate~ 
there is some error, pi, associated with the solution tiE over the ith interval. If 
properly defined, pi should be directly related to the size of LI Ui(r) over the in&-v& 
and slzould be an increasing function of interval length. Gordon [S] proposes a 
definition of pi , indicates its functional dependence on interval length, and gives 
a formula whereby the calculated value of pi can be used to select the (l +- i)th 
interval length. We now derive a different definition of pi motivvated by OK pertur- 
bation formalism and we apply the definition to interval selection. 

The error associated with a perturbation solution results from the neglect of 
high-order terms in the perturbation expansion [Eq. (6)] of the solution. if the 
expansion is convergent, then the terms ignored are negligible if the highest order 
term included is small compared to the zero-order term. Letting IV be the highest 
order in our expansion of L[~ , we should require that 2~~’ be sma3! with respect to zP~ 
A problem arises because in the classically allowed regions, a good zero-order 
soiution will be oscillatory, thus making any direct comparison of uD and I.+: 
unreliable. Over the ith interval, zfl goes roughly as sin iciu, where /1-i is the effective 
focal wavenumber at rio, the interval midpoint: 

ki = [k” - U(r.O)llp. I - 

However, in this classically allowed region j z,f” ! G- 1 k;‘u”’ 1 (where the prime 
denotes differentiation with respect to I.) should behave as j sin kir i + / cr,s kir 8, 
and thus be approximately constant. Furthermore, / LP j + 1 k;Vv’ ! is zero at ri 
and increases with propagation through the interval. Hence, we define p; as 

The variable pi is the “error” associated with the solution in the ith interval in the 
sense that if pi at the end of the interval is small, then Nth order perturbation 
theory is adequate to propagate the solution to the end of the interval and zP~ 
and higher-order terms can be ignored. While the motivation for our def;,nition 
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of pi is specific to classically allowed regions, the definition itself is equally appli- 
cable to classically forbidden regions. 

The error expression (11) we have developed can now be used to select the largest 
intervals such that the error for each interval does not exceed some preset maximum 
tolerable error. By using the largest intervals consistent with a desired accuracy, 
the perturbation method becomes optimally efficient. In order to select the largest 
ith interval, we need to know how pi evaluated at the end of the interval varies with 
the interval length h. We restrict ourselves to first-order perturbation theory as, 
in effect, does Gordon. We consider first the classically allowed region; later we 
discuss the classically forbidden region. In the classically allowed region, the 
denominator of pi is a mildly oscillating function which we approximate as a 
constant. Then pi evaluated at the end of the interval varies with 12 as its numerator 
evaluated at the end of the interval varies with h. Expanding the numerator at the 
end of the interval in a Taylor series about the beginning of the interval, we obtain 

As discussed above 

So Eq. (12) becomes 

h)j = 1 z&-J + hul’(rJ + 4 zF(rJ + *a* [ 

+ j k;l [z&J + hul”(rJ + ; ul’“(rJ + .* -1 I. 

(12) 

Ul(Yi) = U”(Ui) = 0. (13) 

/ Ul(l’i + h)l + 1 k,V (Yi + /z)j = ; I u’“(ri)I + g 1 J(rJ + ; zf’(rJl. 
(14) 

From Eq. (8) Ul”(ri) and ~l’“(l*i) are known. Making the substitution into Eq. (14), 
we obtain 

1 U’(ri + /%)I + 1 kilU1’(ri + h)l 

+ d Ui(ri) k;‘u”(rJ ( 1. (15) 

The Taylor series expansion in Eq. (15) would be good to second order in h if it 
were not for the fact that kt and usually d Ui(rJ are defined relative to the midpoint 
of the interval and are therefore not constants but functions of h. To proceed 
further we must assume some form for U,“(r) in order to define the behavior of 
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4 U&J as a function of h. As an example, we take I;r”(r) to be the first ~2 terms in 
the Taylor series expansion of U(r) about r:, the interval midpoint. Then 4 U,(r) 
consists of the remaining terms of the expansion: 

Substituting Eq. (16) into Eq. (15) and retaining only the leading term in 4 L;,(rJ 
and (4 UJrJ $ (h/2)[4 U&J]‘), we find 

In this expression k;l, u’(rF), U”(rio)l and P(r,*) are ail functions of interval 
length through their dependence on ri O However, the leading terms of the Taylor . 
series expansions of each of these functions about ri are independent of interval 
length. Therefore, from Eq. (17) we see that, if U,:O(r) is taken to be the first m terms 
of the Taylor series expansion of U(r) about rio, then ,+ evaluated at the end of the 
interval varies with interval length as 

The proportionality constant in this expression could be determined from Eq. (17;. 
However a more practical approach is to assume the constant is approximately 
the same for adjacent intervals. Then, taking our criterion for accuracy to be that pt 
never exceed a given upper limit p. , we arrive at the following formula ror 
predicting successive interval lengths: 

where h,+, is the predicted (i + 1)th interval length given the error pi over the ith 
interval of length hi . If pi exceeds p. ) then I?,+, is -made suitably smaller than h, : 
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if pi is less than pO, then Iz,+~ is made suitably larger than hi . Hence by Eq. (19) 
appropriate interval sizes are automaticall?-, selected as the integration proceeds. 

Equation (19) is rigorously valid only in the classically allowed region, because 
we have assumed that the denominator in pi is approximately constant. For 

propagation out of classically forbidden regions, the denominator of pi increases 
exponentially with interval length. Therefore, the dependence of pi on h is 
overestimated by Eq. (18) and consequently Iz~+~ is underestimated by Eq. (19). 
For propagation into classically forbidden regions, the denominator of pi decreases 
exponentially with interval length. Hence the dependence on h is underestimated 
by Eq. (18) and &+I is overestimated by Eq. (19). These difficulties with Eq. (19) 
in the classically forbidden regions are not serious for two reasons. First, when the 
wavefunction is small relative to its asymptotic amplitude, large relative errors in its 
calculation have negligible effect on the ultimate accuracy of the phase shift. This 
means that for most of the strongly forbidden region about r = 0, the very small 
value of the wavefunction can be approximated by zero with no loss in accuracy. 
This also means that while the wavefunction is small, yet not small enough to be 
approximated by 0, we can tolerate unusually large relative errors [such as those 
measured by pit1 if /z,.+~ were to be overestimated by Eq. (19)] without sacrificing 
accuracy. In other words, little of the classically forbidden region need be included 
in the calculation and the part of the region that is included can support, with no 
loss of accuracy in the phase shift, a wavefunction with unusually high relative 
error. A second reason that the dificulties of Eq. (19) are not serious is that the 
proportionality constant used in deriving the equation is based upon the success of 
predicting the error for the previous interval. In an empirical way, Eq. (19) will 
compensate for the fact that in the classically forbidden region pi does not vary 
with lz exactly in accordance with Eq. (18). Hence, for both of these reasons, 
Eq. (19) would seem to be an acceptable interval-selection formula in the classically 
forbidden region. In our experience, the equation has always proven adequate. 

In this section, our analysis has been exclusively directed to the single differential 
equation of elastic scattering. However, the entire analysis can be readily extended 
to the coupled differential equations of inelastic scattering in a manner similar 
to that of Gordon [5]. All the formulas developed in this section for elastic 
scattering have a direct analogue in inelastic scattering. 

III. COMPARISON OF NUMEROV AND PERTURBATION METHODS 

To determine whether the perturbation method is competitive with better known 
so-called “direct” methods of numerical integration, we consider now the parallel 
application of the perturbation and direct methods to the system treated by 
Bernstein [l], namely Hg scattering from H, via an L-J (12-6) interaction. We take 
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three different sets of parameters (A and B in Bernstein’s reduced units) corre- 
sponding roughly to collision energies equal to l/l0 the well depth, the well depth 
and 10 times the well depth. For each set of parameters phase shifts for seiectttd 
partial waves from I = 0 to 1 = 50 are computed. 

For our comparison we use the most efhcient direct integration method, that of 
Numerov [ll]~ The particular version of the perturbation method we SE: is 3s 
follows: 

(1) The perturbation expansion, Eq. (6) is carried out only to first order; 

(2) il,O(,) is taken to be the effective potential at the interval midpoint; 

(3) d W,(r) is approximated by the linear and quadratic (but irot the higher 
order) terms of Taylor series expansion of the effective potential about the interval 
midpoint. 

By using only first-order perturbation theory, we need do only relativehy simple 
integrals [Eq. (9b)]. By taking U,“(r) to be constant throughout the interval, the 
integrals can be substantially simplified by virtue of symmetry (see the appendix). 
Finally approximating d U,(r) eliminates the need to evaluate very small integrals 
that contribute little to the solution. 

In both methods, a starting and a stopping point for the integration musr b.e 
specified for each 1. To ensure a fair comparison, we use the same starting 2nd 
stopping points for both methods. For each I the starting point is fixed by a 
preliminary computation and is taken to be where the wavefunction is less than lo-” 
of its value at the classical turning point. For all I the stopping point is taken to be 
ivhere the potential falls below 10-5E. 

In both methods the phase shift 6, is determined at the end of the integration by 
comparing the numerical solution to the asymptotic spherical-Bessel-function form 
of the wavefunction [l]. For the perturbation method, tbe wavefunction and its 
derivative at the stopping point are sufficient to determine 6, . For the Tuumerov 
method, only the wavefunction, and not its derivative, is available at the stopping 
point and 6, cannot be directly determined. Instead, the nearest zero is the 
numerical solution is found by interpolation The position of the zero is suficient 
to determine 6, . The accuracy of the computed phase shifts are determined by a 
single input parameter for each method: p,, ) defined by Eq. (19) for the pertubsiion 
method and h, the grid size for the Numerov method. 

All computations were done in Fortran IV on the CDC 6500 computer in the 
Purdue University Computer Center. The computer programs for both methods 
were written with care to maximize their ethciency. The results of onr calculati.ons 
are collected in Tables I through III. 

In Tables I and II we give results for the intermediate case A = lrJ, B = 125. 
En Table I we Iist phase shifts, along with CPU time and number of ir;“ierva!s 
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TABLE I 

Phase shift, number of intervals, and computation time as a function of 1 and p,, , for the 
perturbation method. A = 10, B = 125.” Upper entries are phase shifts; lower 

entries are number of intervals/CPU time (set). 

I 

PO I 10 20 30 40 50 

1 -6.7258 3.2649 0.1405 
111.018 10/.019 9,‘.016 

10-l -6.7198 3.4002 0.3598 
B/.028 161.027 171.029 

IO-2 -6.7161 3.4935 0.4446 
341.054 31/.052 361.057 

10-s -6.7144 3.5169 0.4632 
70,‘.102 76/.112 891.133 

10-a -6.7143 3.5188 0.4653 
1481.218 1721.251 1931.282 

10-S -6.7143 3.5193 0.4658 
3 171.453 3691.548 414/.603 

10-G -6.7143 3.5194 0.4659 
6841.980 790/1.15 889j1.29 

-0.2169 
S/.016 

-0.0473 
14j.024 

0.0448 
34,!.057 

0.0547 
81/.133 

0.0562 
1741.257 

0.0565 
3731.547 

0.0566 
800/1.16 

-0.3223 
81.017 

-0.0505 
16/.034 

0.0047 
371.060 

0.0120 
81/.121 

0.0132 
1741.260 

0.0134 
3721.542 

0.0135 
799j1.16 

-0.2009 
81.017 

-0.0826 
14i.027 

-0.0023 
32/‘.052 

0.0032 
691.107 

0.0042 
147/.219 

0.0044 
315j.462 

0.0044 
6761.986 

a Reduced units defined in Ref. 1. 

required, as a function of p0 and I for the pertubation method. Table II shows 
phase shifts, CPU time, and the number of intervals required as a function of h and I 
for the Numerov method. The CPU time is taken to be the time required to 
integrate the partial-wave equation from the starting point to the stopping point 
plus the time to calculate the phase shift. There are obvious trends in Tables I and II. 
For a given partial wave 2, decreasing p,, increases the number of intervals required 
and hence increases the CPU time for the perturbation method. Likewise, 
decreasing the grid size increases the number of intervals and consequently the 
CPU time for the Numerov method. 

To compare quantitatively the efficiency of the Numerov and perturbation 
methods we list in Table III the CPU time as a function of the absolute accuracy 
demanded in the phase shift. We find these times by linear interpolation using 
Tables 1 and II for the case A = 10, B = 125 and similar tables for the remaining 
cases. The true phase shift is assumed to be the converged perturbation value, 
which differs by no more than lo-” from the converged Numerov value. Table III 
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TABLE II 

Phase shifts, number of intervals, and computation times as a function of i and the kzterval 
length, h, for the Numerov method. A = lG, B = 125.” Upper eaides sre phase skifts; louver 

entries are number of intervals/CPU time (set) 

:: 

.Q9 

.a7 

.a5 

.G4 

.03 

.a2 

.a1 

*GO5 

.oat 

!  

0 10 20 30 

-6.6489 
83!.034 

-6.6482 
105/.042 

-6.7025 
148:.069 

-6.7087 
185!.G79 

-6.7125 
247j.136 

-6.7139 
3711.144 

-6.7142 
742i.290 

-6.7143 
i483j.569 

-6.7142 
7411/2.83 

3.6190 0.5572 
82.039 82,'.039 

3.5659 0.493 1 
105!.047 103,'.045 

3.5308 0.4723 
148j.064 145i.068 

3.5243 0.4687 
184j.085 181j.081 

3.5210 0.4669 
2461.115 241,'.113 

3.5198 0.4661 
3691.154 361,!.151 

3.5195 0.4659 
7371.304 722j.295 

3.5194 a.4659 
14741.623 14441.596 

3.5194 0.4659 
7372j2.92 721?/2.76 

G.0893 G.0491 
8Qj.036 6;:.034 

0.0745 0.0189 
87!.046 7E!.G44 

o.ao15 0.0169 
12: ;.a64 : :a.'.052 

0.0588 0.0152 
153,'.0?4 137'.072 

9.0572 0.0139 
203/.105 1X2/.092 

3.0567 a.0136 
304.142 273/. 127 

3.G566 0.0136 
610:.261 546,'.263 

0.0566 0.0135 
1219,'.518 1091,1.474 

0.0566 0.0135 
6191'2.54 5455:2.34 

40 50 

--. 

a Reduced units are deked in Ref. 1~ 

has several features we describe first before drawing our conclusions on the 
relative efficiency of the two methods. 

In Table III the CPU time required for a given accuracy in 6, has a dependency 
on I that is different for the two methods. For the perturbation method, the 
CPU time is not a monotonic function of 1 but peaks at intermediate I, and then 
decreases as I increases. This behavior is not unexpected since the contribution of 
the centrifugal barrier at intermediate I causes the effective potential to vary 
rapidly as a function of I’. At other values of I the effective potential is smoother, 
either because the centrifugal barrier is smaller (Iow value off> or because the outer 
side of the centrifugal barrier dominates (large value of 1). The more sharply 
varying the elective potential, the shorter each interval must be in order that d L$(s) 
be sufficiently small over the interval. The more intervals required, the longer the 
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TABLE III 

Computation times as a function of I, A”, and the absolute accuracy required of the phase shift. 
B = 125.” Upper entries are perturbation results: lower entries are Numerov results. CPU time 

is given in seconds. 

A” 
Absolute I 
Accuracy 0 10 20 30 40 50 

0.01 .03 .lO .06 
.lO .04 .04 

3 0.005 .03 .12 .08 
.ll .06 .05 

0.001 .06 .24 .16 
.14 .07 .06 

10 

0.01 .02 .09 .lO 
.07 .07 .06 

0.005 .03 .11 .12 
.08 .08 .07 

0.001 .08 .22 .25 
.13 .13 .ll 

.07 .06 .05 
.06 .04 .04 

.ll .09 .07 

.06 .05 .04 

.21 .18 .13 

.lO .08 .06 

30 

0.01 .Ol .07 .09 .lO .08 .06 
.08 .09 .08 .06 .06 .06 

0.005 .03 .09 .lO .12 .11 .09 
.09 .09 .09 .09 .08 .06 

0.001 .lO .18 .12 .19 .20 .16 
.86 .17 .19 .15 .15 .1.5 

Q Reduced units defined in Ref. 1. 

calculation takes. For the Numerov method, the CPU time for a given accuracy 
in 6, is almost always a monotonically decreasing function of I. Since increasing 1 
increases the effective potential and hence decreases the local wavenumber 
(see Eq. lo), the wavefunction oscillates less rapidly for larger 1. Since the Numerov 
method computes the wavefunction directly, as I increases a coarser grid (i.e. larger 
intervals) is needed to represent the wave function with the same accuracy. The 
larger the intervals, the quicker the calculation. 

In Table III the CPU time required for a given accuracy in 6, has a dependency 
on collision energy (proportional to the square root of A in Table III) that is 
different for the two methods. For the Numerov method, the CPU time, with few 
exceptions, increases monotonically with A for a given value of 1. Increasing A 
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increases the local wavenumber, implying a more rapidly oscillating wavef~~~~~o~ 
requiring smaller intervals and hence longer times for accurate calculation. For th.;c 
perturbation method, the CPU time as a function of A has a romplicated behavior 
due to opposing trends. For a given I, increasing .4 alters the range of the inte- 
gration, i.e. the starting and stopping points for the integration move in. This 
change has little effest on the Numerov method. However, it can strongly affect the 
perturbation method because the part of the effective potential curve that is newly 
exposed is very rapidly varying while the part of the curve that is dropped is very 
slowly varying. Hence more intervals are required to describe the potential and 
consequently the calculation time increases. Opposing this e 
trend that with increasing collision energy the p 
to the details of the potential. In other words 2s 4 increases, k” begins to dominate 
Eqs. (7) and (8) for u0 and ~2~ even if AU,(r) is fairly large. So as /i increases, 
the poteneial need not be described so accurately; this leads to larger intervals and 
shorter times These two trends, a more rapidly varying effective potential but less 
need to describe it accurately, conflict to produce a complicated dependency of 
CPU times as a function of A for the perturbation method. 

The general features of Table III that we have discussed emphasize that rh- 
number ef intervals required for the perturbation method depends on the e,Eective 
potential while the number of intervals required for the Numerov method depends 
on the wave function. Since the effective potential is less “oscillatory” than the 
wave function, the perturbation method requires far fewer intervals than the 
Numerov method. Ifowever, the Numerov method requires far fewer arithmetic 
operations per interval than does the perturbation method The resuits in Table I 
indicate that except for values of I near 0, the Numerov method is as fast or 
considerably faster than the perturbation method. Evidently, the Numeroi; 
method’s greater efficiency per interval outweights the requirement of a Iarger 
number of intervals. 

Allison has made a similar comparison of Numerov and perturbation methods 
for rotationally inelastic scattering. In this case colrp!edT diEerential equations must 
be solved to obtain an S matrix. Only one collision system a: one energy and one 
total angular momentum was studied. Requiring an accuracy of about 6.005 in the 
square of magnitude of each S matrix element, Allison concludes in part that the 
Namerov method is substantially faster unless the number of coupled equations is 
quite large (larger than 16). However, Allison also conchudes that the perturbation 
approach is much faster if calculations for several ditIerent energies are to be 
performed on the same collision system. The reason for this is that in problems 
involving coupled equations, the determination of the reference potential matrix 
42,” requires a matrix diagonalization which takes up much of the time of B 
calculation at one energy. However, once determined IJin can be saved and reused 
in calculations at other energies. No such advantage has been developed for the 
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Numerov method. For the elastic scattering calculations described in this paper, 
it is not true that the perturbation method is much faster than the Numerov 
method if calculations at several energies must be performed. For elastic scattering, 
the determination of Uio takes little of the total time of calculation and saving it 
for use at other energies would provide essentially no advantage over the Numerov 
method. 

To be comprehensive, our work and that of Allison should be extended to other 
systems over a wider range of energies. Different versions of the perturbation 
method should be investigated along with automatic procedures for varying the 
interval length during the Numerov direct integration. We feel our results are 
demonstrative of the general behavior of the perturbation and Numerov methods 
for elastic scattering and we leave the comprehensive study to those planning 
extensive calculations. 

APPENDIX. SIMPLIFICATION OF PERTURBATION INTEGRALS BY SYMMETRY 

We expand U,(r) about the midpoint, rio, of the ith interval as 

U,(r) = U(rio) + (r - r?) $F /I_p,n + t (r - ri”)” $F jl_/, + “‘a (A1) 
‘ to 

We define a new variable xi 

xi = r - y”, 642) 

and express U(r) in the ith interval according to Eq. (4) as 

U,(r) = Uio(r) + Ll U,(r), 643) 

where we implicitly take Uio, the zero-order potential, to be constant. Identifying 
the corresponding terms in (Al) and (A3) and introducing the definition (A2), we 
have explicitly 

U:(r) = U(r.F), (A4) 

In this case the linearly independent solutions of Eq. (7) are 

tjl = Ai sin kixi , 

42 = Bi COS kixi 3 ki E [k2 - U(rio)]1/2, 
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in classically al!owed regions and 

q$ = Ai sinh E,x, , 

+2 = Bi cash i&xi, .ci = ;-ki]“p3 

in classically forbidden regions. From Eq. (5b) the first-order perturbation 
correction is then (in the classically allowed regions) 

x {a,xi’ + b,xi2> * (Af sin kiwi’ + B, cos kix,‘). 

Hence the total correction is a sum of eight integrals, whose integrands are either 
even or odd with respect to reflection about the midpoint of the interval. In fact? 
four of these integrands are odd and thus vanish. The same considerations hold 
for the classically forbidden regions. 
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